Fitness
Is physical fitness associated with leucocyte telomere length in youth with type 1 diabetes? – Pediatric Research
Turner, K., Vasu, V. & Griffin, D. Telomere biology and human phenotype. Cells 8, 73 (2019).
Greider, C. W. & Blackburn, E. H. The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51, 887–898 (1987).
Demanelis, K. et al. Determinants of telomere length across human tissues. Science 369, eaaz6876 (2020).
Sfeir, A. & De Lange, T. Removal of shelterin reveals the telomere end-protection problem. Science 336, 593–597 (2012).
Chakravarti, D., LaBella, K. A. & DePinho, R. A. Telomeres: history, health, and hallmarks of aging. Cell 184, 306–322 (2021).
Cheng, F. et al. Diabetes, metabolic disease, and telomere length. Lancet Diabetes Endocrinol. 9, 117–126 (2021).
Wang, J. et al. Association between telomere length and diabetes mellitus: a meta-analysis. J. Int. Med. Res. 44, 1156–1173 (2016).
Fyhrquist, F., Tiitu, A., Saijonmaa, O., Forsblom, C. & Groop, P-H. FinnDiane Study Group Telomere length and progression of diabetic nephropathy in patients with type 1 diabetes. J. Intern. Med. 267, 278–286 (2010).
Januszewski, A. S. et al. Shorter telomeres in adults with type 1 diabetes correlate with diabetes duration, but only weakly with vascular function and risk factors. Diabetes Res. Clin. Pract. 117, 4–11 (2016).
Uziel, O. et al. Telomere dynamics in arteries and mononuclear cells of diabetic patients: effect of diabetes and of glycemic control. Exp. Gerontol. 42, 971–978 (2007).
Valente, C. et al. Effect of physical activity and exercise on telomere length: systematic review with meta‐analysis. J. Am. Geriatr. Soc. 69, 3285–3300 (2021).
Latifovic, L., Peacock, S. D., Massey, T. E. & King, W. D. The influence of alcohol consumption, cigarette smoking, and physical activity on leukocyte telomere length. Cancer Epidemiol. Biomark. Prev. 25, 374–380 (2016).
Sillanpää, E., Törmäkangas, T., Rantanen, T., Kaprio, J. & Sipilä, S. Does telomere length predict decline in physical functioning in older twin sisters during an 11-year follow-up? AGE 38, 34 (2016).
Song, Z. et al. Lifestyle impacts on the aging‐associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell 9, 607–615 (2010).
Von Känel R., Bruwer E. J., Hamer M., De Ridder J. H., Malan L. Association between objectively measured physical activity, chronic stress and leukocyte telomere length. J. Sports Med. Phys. Fitness. 57, (2017). https://doi.org/10.23736/S0022-4707.16.06426-4.
Schellnegger, M., Lin, A. C., Hammer, N. & Kamolz, L. P. Physical activity on telomere length as a biomarker for aging: a systematic review. Sports Med. Open 8, 111 (2022).
García-Hermoso, A., Ramírez-Campillo, R. & Izquierdo, M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med. 49, 1079–1094 (2019).
García-Hermoso, A., Ramírez-Vélez, R., García-Alonso, Y., Alonso-Martínez, A. M. & Izquierdo, M. Association of cardiorespiratory fitness levels during youth with health risk later in life: a systematic review and meta-analysis. JAMA Pediatr. 174, 952 (2020).
Huerta-Uribe, N., Ramírez-Vélez, R., Izquierdo, M. & García-Hermoso, A. Association between physical activity, sedentary behavior and physical fitness and glycated hemoglobin in youth with type 1 diabetes: a systematic review and meta-analysis. Sports Med. 53, 111–123 (2023).
Denham, J. & Sellami, M. Exercise training increases telomerase reverse transcriptase gene expression and telomerase activity: a systematic review and meta-analysis. Ageing Res. Rev. 70, 101411 (2021).
Lin, X., Zhou, J. & Dong, B. Effect of different levels of exercise on telomere length: a systematic review and meta-analysis. J. Rehabil. Med. 51, 473–478 (2019).
Paltoglou, G. et al. A comprehensive, multidisciplinary, personalized, lifestyle intervention program is associated with increased leukocyte telomere length in children and adolescents with overweight and obesity. Nutrients 13, 2682 (2021).
Sánchez-González, J. L. et al. Effects of physical exercise on telomere length in healthy adults: systematic review, meta-analysis, and meta-regression. JMIR Public Health Surveill. 10, e46019 (2024).
Song, S., Lee, E. & Kim, H. Does exercise affect telomere length? a systematic review and meta-analysis of randomized controlled trials. Medicina 58, 242 (2022).
Kozieł, S. M. & Malina, R. M. Modified maturity offset prediction equations: validation in independent longitudinal samples of boys and girls. Sports Med. 48, 221–236 (2018).
ElSayed, N. A. et al. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of care in diabetes—2024. Diabetes Care 47, S52–S76 (2024).
Ojeda-Rodríguez, A. et al. Association between favourable changes in objectively measured physical activity and telomere length after a lifestyle intervention in pediatric patients with abdominal obesity. Appl. Physiol. Nutr. Metab. 46, 205–212 (2021).
Blair, R. C. & Higgins, J. J. Comparison of the power of the paired samples t test to that of Wilcoxon’s signed-ranks test under various population shapes. Psychol. Bull. 97, 119–128 (1985).
Van Buuren, S. Multiple imputation of discrete and continuous data by fully conditional specification. Stat. Methods Med. Res. 16, 219–242 (2007).
White, I. R., Royston, P. & Wood, A. M. Multiple imputation using chained equations: issues and guidance for practice. Stat. Med. 30, 377–399 (2011).
Sun, Y., Fang, J., Wan, Y., Su, P. & Tao, F. Association of early-life adversity with measures of accelerated biological aging among children in China. JAMA Netw. Open 3, e2013588 (2020).
Hiam, D. et al. Aerobic capacity and telomere length in human skeletal muscle and leukocytes across the lifespan. Aging 12, 359–369 (2020).
Åström, M. J. et al. Telomere length and physical performance among older people—the Helsinki Birth Cohort Study. Mech. Ageing Dev. 183, 111145 (2019).
Buttet, M. et al. Effect of a lifestyle intervention on telomere length: a systematic review and meta-analysis. Mech. Ageing Dev. 206, 111694 (2022).
Almuraikhy, S. et al. Impact of moderate physical activity on inflammatory markers and telomere length in sedentary and moderately active individuals with varied insulin sensitivity. J. Inflamm. Res. 16, 5427–5438 (2023).
Powers, S. K., Goldstein, E., Schrager, M. & Ji, L. L. Exercise training and skeletal muscle antioxidant enzymes: an update. Antioxidants 12, 39 (2022).
Ma, J. et al. Translating the diabetes prevention program lifestyle intervention for weight loss into primary care a randomized trial. JAMA Intern. Med. 173, 113–121 (2013).
Paltoglou, G. et al. Interrelations among the adipocytokines leptin and adiponectin, oxidative stress and aseptic inflammation markers in pre- and early-pubertal normal-weight and obese boys. Endocrine 55, 925–933 (2017).
Arsenis, N. C., You, T., Ogawa, E. F., Tinsley, G. M. & Zuo, L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget 8, 45008–45019 (2017).
López-Gil, J. F., Ramírez-Vélez, R., Izquierdo, M. & García-Hermoso, A. Handgrip strength and its relationship with white blood cell count in U.S. adolescents. Biology 10, 884 (2021).
Tuttle, C. S. L., Thang, L. A. N. & Maier, A. B. Markers of inflammation and their association with muscle strength and mass: a systematic review and meta-analysis. Ageing Res. Rev. 64, 101185 (2020).
Kadi, F. & Ponsot, E. The biology of satellite cells and telomeres in human skeletal muscle: effects of aging and physical activity. Scand. J. Med Sci. Sports 20, 39–48 (2010).
Masschelein, E. et al. Exercise promotes satellite cell contribution to myofibers in a load-dependent manner. Skelet. Muscle 10, 21 (2020).
Daniali, L. et al. Telomeres shorten at equivalent rates in somatic tissues of adults. Nat. Commun. 4, 1597 (2013).