Fitness
Cognitive benefits of higher cardiorespiratory fitness in preadolescent children are associated with increased connectivity within the cingulo-opercular network – Scientific Reports
Lee, B. Y. et al. Modeling the economic and health impact of increasing children’s physical activity in the United States. Health Aff (Millwood) 36, 902–908 (2017).
Haskell, W. L. et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116, 1081–1093 (2007).
Hillman, C. H., Erickson, K. I. & Kramer, A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008).
Kamijo, K., Takeda, Y., Takai, Y. & Haramura, M. The relationship between childhood aerobic fitness and brain functional connectivity. Neurosci. Lett. 632, 119–123 (2016).
Pontifex, M. B. et al. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cognitive Neurosci. 23, 1332–1345 (2011).
Voss, M. W. et al. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 199, 166–176 (2011).
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).
Braver, T. S. & Barch, D. M. Extracting core components of cognitive control. Trends Cogn Sci. 10, 529–532 (2006).
Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull 121, 65–94 (1997).
Davidson, M. C., Amso, D., Anderson, L. C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006).
Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).
Falkenstein, M., Hoormann, J. & Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst) 101, 267–291 (1999).
Bull, R., Johnston, R. S. & Roy, J. A. Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Dev. Neuropsychol. 15, 421–442 (1999).
St Clair-Thompson, H. L. & Gathercole, S. E. Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quart. J. Exp. Psychol. 59, 745–759 (2006).
Van Waelvelde, H., Vanden Wyngaert, K., Mariën, T., Baeyens, D. & Calders, P. The relation between children’s aerobic fitness and executive functions: a systematic review. Infant Child Dev. 29, e2163 (2020).
Raine, L. B. et al. A large-scale reanalysis of childhood fitness and inhibitory control. J. Cogn. Enhanc. 2, 170–192 (2018).
Hillman, C. H., Castelli, D. M. & Buck, S. M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sports Exerc. 37, 1967–1974 (2005).
Hillman, C. H. et al. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159, 1044–1054 (2009).
Chaddock-Heyman, L. et al. Brain network modularity predicts improvements in cognitive and scholastic performance in children involved in a physical activity intervention. Front. Human Neurosci. 3(14), 346 (2020).
Esteban-Cornejo, I. et al. Physical fitness, hippocampal functional connectivity and academic performance in children with overweight/obesity: the activebrains project. Brain, Behav. Immun. 91, 284–295 (2021).
Logan, N. E. et al. The differential effects of adiposity and fitness on functional connectivity in preadolescent children. Med. Sci. Sports Exerc. 54, 1702–1713 (2022).
Moore, R. D. et al. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children. Brain Cognition 82, 43–57 (2013).
Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H. & Kamijo, K. The effects of acute aerobic exercise on executive function: a systematic review and meta-analysis of individual participant data. Neurosci. Biobehav. Rev. 128, 258–269 (2021).
Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. 104, 11073–11078 (2007).
Dosenbach, N. U. F. et al. Prediction of Individual Brain Maturity Using fMRI. Science 329, 1358–1361 (2010).
Marek, S., Hwang, K., Foran, W., Hallquist, M. N. & Luna, B. The contribution of network organization and integration to the development of cognitive control. PLoS Biol. 13, e1002328 (2015).
Sestieri, C., Corbetta, M., Spadone, S., Romani, G. L. & Shulman, G. L. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J. Cogn. Neurosci. 26, 551–568 (2014).
Cooper, P. S. et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage 108, 354–363 (2015).
Friston, K. J. Functional and effective connectivity: a review. Brain Connect 1, 13–36 (2011).
Blinowska, K. J., Kuś, R. & Kamiński, M. Granger causality and information flow in multivariate processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 050902 (2004).
Kaminski, M. J. & Blinowska, K. J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 65, 203–210 (1991).
Ligeza, T. S., Wyczesany, M., Tymorek, A. D. & Kamiński, M. Interactions between the prefrontal cortex and attentional systems during volitional affective regulation: an effective connectivity reappraisal study. Brain Topogr. 29, 253–261 (2016).
Adamczyk, A. K. & Wyczesany, M. Theta-band connectivity within cognitive control brain networks suggests common neural mechanisms for cognitive and implicit emotional control. J. Cognitive Neurosci. 35, 1656–1669 (2023).
Hanslmayr, S. et al. The electrophysiological dynamics of interference during the Stroop task. J. Cogn. Neurosci. 20, 215–225 (2008).
Oehrn, C. R. et al. Human hippocampal dynamics during response conflict. Curr. Biol. 25, 2307–2313 (2015).
Cai, W. et al. Causal interactions within a frontal-cingulate-parietal network during cognitive control: convergent evidence from a multisite-multitask investigation. Cereb. Cortex 26, 2140–2153 (2016).
von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann. Intern. Med. 147, 573–577 (2007).
American College of Sports Medicine, Riebe, D., Ehrman, J. K., Liguori, G. & Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription. (2018).
Utter, A. C., Robertson, R. J., Nieman, D. C. & Kang, J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med. Sci. Sports Exercise 34, 139 (2002).
Freedson, P. S. & Goodman, T. L. Measurement of oxygen consumption. In Pediatric laboratory exercise testing: Clinical guidelines (ed. Rowland, T. W.) 91–113 (Human Kinetics, 1993).
Bar-Or, O. Pediatric Sports Medicine for the Practitioner. (Springer, New York, NY, 1983). https://doi.org/10.1007/978-1-4612-5593-2.
Shvartz, E. & Reibold, R. C. Aerobic fitness norms for males and females aged 6 to 75 years: a review. Aviat. Space Environ. Med. 61, 3–11 (1990).
Tanner, J. M. Growth at Adolescence; with a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity (Blackwell Scientific Publications, 1962).
Kaufman, A. S., Kaufman, N. L., & American Guidance Service. K-BIT : Kaufman Brief Intelligence Test. (1990).
DuPaul, G. J., Power, T. J., Anastopoulos, A. D. & Reid, R. ADHD Rating Scale—IV: Checklists, Norms, and Clinical Interpretation. viii, 79 (The Guilford Press, New York, NY, US, 1998).
Birnbaum, A. S. et al. Survey development for assessing correlates of young adolescents’ eating. Am. J. Health Behav. 26, 284–295 (2002).
Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
Spencer, K. M. & Coles, M. G. The lateralized readiness potential: relationship between human data and response activation in a connectionist model. Psychophysiology 36, 364–370 (1999).
Mantini, D. et al. A signal-processing pipeline for magnetoencephalography resting-state networks. Brain Connect. 1, 49–59 (2011).
Spadone, S., Wyczesany, M., Della Penna, S., Corbetta, M. & Capotosto, P. Directed flow of beta band communication during reorienting of attention within the dorsal attention network. Brain Connect 11, 717–724 (2021).
Hämäläinen, M. S. & Ilmoniemi, R. J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42 (1994).
Fuchs, M., Kastner, J., Wagner, M., Hawes, S. & Ebersole, J. S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712 (2002).
Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T. & Papademetris, X. More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuroimage 42, 717–725 (2008).
MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).
Papademetris, X. et al. BioImage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006).
Colclough, G. L., Brookes, M. J., Smith, S. M. & Woolrich, M. W. A symmetric multivariate leakage correction for MEG connectomes. Neuroimage 117, 439–448 (2015).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).
Chaddock, L. et al. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 32, 249–256 (2010).
Kao, S.-C. et al. Aerobic Fitness Is Associated With Cognitive Control Strategy in Preadolescent Children. J Mot Behav 49, 150–162 (2017).
Scudder, M. R. et al. Aerobic capacity and cognitive control in elementary school-age children. Med. Sci. Sports Exerc. 46, 1025–1035 (2014).
Wu, C.-T. et al. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 25, 333–341 (2011).
Crottaz-Herbette, S. & Menon, V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn. Neurosci. 18, 766–780 (2006).
Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).
Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Prefrontal regions involved in keeping information in and out of mind. Brain 124, 2074–2086 (2001).
Bunge, S. A. et al. Neural circuitry underlying rule use in humans and nonhuman primates. J. Neurosci. 25, 10347–10350 (2005).
Crone, E. A., Wendelken, C., Donohue, S. E. & Bunge, S. A. Neural evidence for dissociable components of task-switching. Cereb. Cortex 16, 475–486 (2006).
Moore, D., Jung, M., Hillman, C. H., Kang, M. & Loprinzi, P. D. Interrelationships between exercise, functional connectivity, and cognition among healthy adults: a systematic review. Psychophysiology 59, e14014 (2022).
Arbabshirani, M. R., Havlicek, M., Kiehl, K. A., Pearlson, G. D. & Calhoun, V. D. Functional network connectivity during rest and task conditions: a comparative study. Human Brain Mapping 34, 2959–2971 (2013).
Koirala, G. R., Lee, D., Eom, S., Kim, N.-Y. & Kim, H. D. Altered brain functional connectivity induced by physical exercise may improve neuropsychological functions in patients with benign epilepsy. Epilepsy Behav. 76, 126–132 (2017).