Connect with us

Fitness

Cognitive benefits of higher cardiorespiratory fitness in preadolescent children are associated with increased connectivity within the cingulo-opercular network – Scientific Reports

Published

on

Cognitive benefits of higher cardiorespiratory fitness in preadolescent children are associated with increased connectivity within the cingulo-opercular network – Scientific Reports

  • Lee, B. Y. et al. Modeling the economic and health impact of increasing children’s physical activity in the United States. Health Aff (Millwood) 36, 902–908 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Haskell, W. L. et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 116, 1081–1093 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Hillman, C. H., Erickson, K. I. & Kramer, A. F. Be smart, exercise your heart: exercise effects on brain and cognition. Nat. Rev. Neurosci. 9, 58–65 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kamijo, K., Takeda, Y., Takai, Y. & Haramura, M. The relationship between childhood aerobic fitness and brain functional connectivity. Neurosci. Lett. 632, 119–123 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pontifex, M. B. et al. Cardiorespiratory fitness and the flexible modulation of cognitive control in preadolescent children. J. Cognitive Neurosci. 23, 1332–1345 (2011).

    Article 

    Google Scholar
     

  • Voss, M. W. et al. Aerobic fitness is associated with greater efficiency of the network underlying cognitive control in preadolescent children. Neuroscience 199, 166–176 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Braver, T. S. & Barch, D. M. Extracting core components of cognitive control. Trends Cogn Sci. 10, 529–532 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull 121, 65–94 (1997).

    Article 
    PubMed 

    Google Scholar
     

  • Davidson, M. C., Amso, D., Anderson, L. C. & Diamond, A. Development of cognitive control and executive functions from 4 to 13 years: evidence from manipulations of memory, inhibition, and task switching. Neuropsychologia 44, 2037–2078 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Article 

    Google Scholar
     

  • Falkenstein, M., Hoormann, J. & Hohnsbein, J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst) 101, 267–291 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bull, R., Johnston, R. S. & Roy, J. A. Exploring the roles of the visual-spatial sketch pad and central executive in children’s arithmetical skills: Views from cognition and developmental neuropsychology. Dev. Neuropsychol. 15, 421–442 (1999).

    Article 

    Google Scholar
     

  • St Clair-Thompson, H. L. & Gathercole, S. E. Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Quart. J. Exp. Psychol. 59, 745–759 (2006).

    Article 

    Google Scholar
     

  • Van Waelvelde, H., Vanden Wyngaert, K., Mariën, T., Baeyens, D. & Calders, P. The relation between children’s aerobic fitness and executive functions: a systematic review. Infant Child Dev. 29, e2163 (2020).

    Article 

    Google Scholar
     

  • Raine, L. B. et al. A large-scale reanalysis of childhood fitness and inhibitory control. J. Cogn. Enhanc. 2, 170–192 (2018).

    Article 

    Google Scholar
     

  • Hillman, C. H., Castelli, D. M. & Buck, S. M. Aerobic fitness and neurocognitive function in healthy preadolescent children. Med. Sci. Sports Exerc. 37, 1967–1974 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Hillman, C. H. et al. The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience 159, 1044–1054 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chaddock-Heyman, L. et al. Brain network modularity predicts improvements in cognitive and scholastic performance in children involved in a physical activity intervention. Front. Human Neurosci. 3(14), 346 (2020).

    Article 

    Google Scholar
     

  • Esteban-Cornejo, I. et al. Physical fitness, hippocampal functional connectivity and academic performance in children with overweight/obesity: the activebrains project. Brain, Behav. Immun. 91, 284–295 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Logan, N. E. et al. The differential effects of adiposity and fitness on functional connectivity in preadolescent children. Med. Sci. Sports Exerc. 54, 1702–1713 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, R. D. et al. Aerobic fitness and intra-individual variability of neurocognition in preadolescent children. Brain Cognition 82, 43–57 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Ishihara, T., Drollette, E. S., Ludyga, S., Hillman, C. H. & Kamijo, K. The effects of acute aerobic exercise on executive function: a systematic review and meta-analysis of individual participant data. Neurosci. Biobehav. Rev. 128, 258–269 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. 104, 11073–11078 (2007).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dosenbach, N. U. F. et al. Prediction of Individual Brain Maturity Using fMRI. Science 329, 1358–1361 (2010).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marek, S., Hwang, K., Foran, W., Hallquist, M. N. & Luna, B. The contribution of network organization and integration to the development of cognitive control. PLoS Biol. 13, e1002328 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sestieri, C., Corbetta, M., Spadone, S., Romani, G. L. & Shulman, G. L. Domain-general signals in the cingulo-opercular network for visuospatial attention and episodic memory. J. Cogn. Neurosci. 26, 551–568 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Cooper, P. S. et al. Theta frontoparietal connectivity associated with proactive and reactive cognitive control processes. NeuroImage 108, 354–363 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Friston, K. J. Functional and effective connectivity: a review. Brain Connect 1, 13–36 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Blinowska, K. J., Kuś, R. & Kamiński, M. Granger causality and information flow in multivariate processes. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70, 050902 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Kaminski, M. J. & Blinowska, K. J. A new method of the description of the information flow in the brain structures. Biol. Cybern. 65, 203–210 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ligeza, T. S., Wyczesany, M., Tymorek, A. D. & Kamiński, M. Interactions between the prefrontal cortex and attentional systems during volitional affective regulation: an effective connectivity reappraisal study. Brain Topogr. 29, 253–261 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Adamczyk, A. K. & Wyczesany, M. Theta-band connectivity within cognitive control brain networks suggests common neural mechanisms for cognitive and implicit emotional control. J. Cognitive Neurosci. 35, 1656–1669 (2023).

    Article 

    Google Scholar
     

  • Hanslmayr, S. et al. The electrophysiological dynamics of interference during the Stroop task. J. Cogn. Neurosci. 20, 215–225 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Oehrn, C. R. et al. Human hippocampal dynamics during response conflict. Curr. Biol. 25, 2307–2313 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cai, W. et al. Causal interactions within a frontal-cingulate-parietal network during cognitive control: convergent evidence from a multisite-multitask investigation. Cereb. Cortex 26, 2140–2153 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • von Elm, E. et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann. Intern. Med. 147, 573–577 (2007).

    Article 

    Google Scholar
     

  • American College of Sports Medicine, Riebe, D., Ehrman, J. K., Liguori, G. & Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription. (2018).

  • Utter, A. C., Robertson, R. J., Nieman, D. C. & Kang, J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med. Sci. Sports Exercise 34, 139 (2002).

    Article 

    Google Scholar
     

  • Freedson, P. S. & Goodman, T. L. Measurement of oxygen consumption. In Pediatric laboratory exercise testing: Clinical guidelines (ed. Rowland, T. W.) 91–113 (Human Kinetics, 1993).


    Google Scholar
     

  • Bar-Or, O. Pediatric Sports Medicine for the Practitioner. (Springer, New York, NY, 1983). https://doi.org/10.1007/978-1-4612-5593-2.

  • Shvartz, E. & Reibold, R. C. Aerobic fitness norms for males and females aged 6 to 75 years: a review. Aviat. Space Environ. Med. 61, 3–11 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • Tanner, J. M. Growth at Adolescence; with a General Consideration of the Effects of Hereditary and Environmental Factors upon Growth and Maturation from Birth to Maturity (Blackwell Scientific Publications, 1962).


    Google Scholar
     

  • Kaufman, A. S., Kaufman, N. L., & American Guidance Service. K-BIT : Kaufman Brief Intelligence Test. (1990).

  • DuPaul, G. J., Power, T. J., Anastopoulos, A. D. & Reid, R. ADHD Rating Scale—IV: Checklists, Norms, and Clinical Interpretation. viii, 79 (The Guilford Press, New York, NY, US, 1998).

  • Birnbaum, A. S. et al. Survey development for assessing correlates of young adolescents’ eating. Am. J. Health Behav. 26, 284–295 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Spencer, K. M. & Coles, M. G. The lateralized readiness potential: relationship between human data and response activation in a connectionist model. Psychophysiology 36, 364–370 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mantini, D. et al. A signal-processing pipeline for magnetoencephalography resting-state networks. Brain Connect. 1, 49–59 (2011).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Spadone, S., Wyczesany, M., Della Penna, S., Corbetta, M. & Capotosto, P. Directed flow of beta band communication during reorienting of attention within the dorsal attention network. Brain Connect 11, 717–724 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Hämäläinen, M. S. & Ilmoniemi, R. J. Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32, 35–42 (1994).

    Article 
    PubMed 

    Google Scholar
     

  • Fuchs, M., Kastner, J., Wagner, M., Hawes, S. & Ebersole, J. S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. 113, 702–712 (2002).

    Article 
    PubMed 

    Google Scholar
     

  • Lacadie, C. M., Fulbright, R. K., Rajeevan, N., Constable, R. T. & Papademetris, X. More accurate Talairach coordinates for neuroimaging using non-linear registration. Neuroimage 42, 717–725 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Papademetris, X. et al. BioImage suite: an integrated medical image analysis suite: an update. Insight J. 2006, 209 (2006).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Colclough, G. L., Brookes, M. J., Smith, S. M. & Woolrich, M. W. A symmetric multivariate leakage correction for MEG connectomes. Neuroimage 117, 439–448 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Royal Stat. Soc. 57, 289–300 (1995).

    Article 
    MathSciNet 

    Google Scholar
     

  • Chaddock, L. et al. Basal ganglia volume is associated with aerobic fitness in preadolescent children. Dev. Neurosci. 32, 249–256 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kao, S.-C. et al. Aerobic Fitness Is Associated With Cognitive Control Strategy in Preadolescent Children. J Mot Behav 49, 150–162 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Scudder, M. R. et al. Aerobic capacity and cognitive control in elementary school-age children. Med. Sci. Sports Exerc. 46, 1025–1035 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wu, C.-T. et al. Aerobic fitness and response variability in preadolescent children performing a cognitive control task. Neuropsychology 25, 333–341 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crottaz-Herbette, S. & Menon, V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn. Neurosci. 18, 766–780 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Badre, D. & Wagner, A. D. Left ventrolateral prefrontal cortex and the cognitive control of memory. Neuropsychologia 45, 2883–2901 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H. & Gabrieli, J. D. E. Prefrontal regions involved in keeping information in and out of mind. Brain 124, 2074–2086 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bunge, S. A. et al. Neural circuitry underlying rule use in humans and nonhuman primates. J. Neurosci. 25, 10347–10350 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Crone, E. A., Wendelken, C., Donohue, S. E. & Bunge, S. A. Neural evidence for dissociable components of task-switching. Cereb. Cortex 16, 475–486 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Moore, D., Jung, M., Hillman, C. H., Kang, M. & Loprinzi, P. D. Interrelationships between exercise, functional connectivity, and cognition among healthy adults: a systematic review. Psychophysiology 59, e14014 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Arbabshirani, M. R., Havlicek, M., Kiehl, K. A., Pearlson, G. D. & Calhoun, V. D. Functional network connectivity during rest and task conditions: a comparative study. Human Brain Mapping 34, 2959–2971 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Koirala, G. R., Lee, D., Eom, S., Kim, N.-Y. & Kim, H. D. Altered brain functional connectivity induced by physical exercise may improve neuropsychological functions in patients with benign epilepsy. Epilepsy Behav. 76, 126–132 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Continue Reading