Connect with us

Fitness

Effects of different types of exercise intensity on improving health-related physical fitness in children and adolescents: a systematic review – Scientific Reports

Published

on

  • Jebeile, H., Kelly, A. S., O’Malley, G. & Baur, L. A. Obesity in children and adolescents: epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 10, 351–365. https://doi.org/10.1016/s2213-8587(22)00047-x (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ezzati, M. et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627–2642. https://doi.org/10.1016/s0140-6736(17)32129-3 (2017).

    Article 

    Google Scholar
     

  • Simmonds, M., Llewellyn, A., Owen, C. G. & Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obesity Rev. 17, 95–107. https://doi.org/10.1111/obr.12334 (2016).

    Article 
    CAS 

    Google Scholar
     

  • The, N. S., Suchindran, C., North, K. E., Popkin, B. M. & Gordon-Larsen, P. Association of adolescent obesity with risk of severe obesity in adulthood. Jama-J. Am. Med. Associat. 304, 2042–2047. https://doi.org/10.1001/jama.2010.1635 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Horesh, A., Tsur, A. M., Bardugo, A. & Twig, G. Adolescent and childhood obesity and excess morbidity and mortality in young adulthood-a systematic review. Curr. Obesity Rep. 10, 301–310. https://doi.org/10.1007/s13679-021-00439-9 (2021).

    Article 

    Google Scholar
     

  • Jebeile, H., Cardel, M. I., Kyle, T. K. & Jastreboff, A. M. Addressing psychosocial health in the treatment and care of adolescents with obesity. Obesity 29, 1413–1422. https://doi.org/10.1002/oby.23194 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Weihrauch-Blueher, S., Schwarz, P. & Klusmann, J.-H. Childhood obesity: Increased risk for cardiometabolic disease and cancer in adulthood. Metabolism-Clin. Exp. 92, 147–152. https://doi.org/10.1016/j.metabol.2018.12.001 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Li, J., Zhou, X., Huang, Z. & Shao, T. Effect of exercise intervention on depression in children and adolescents: a systematic review and network meta-analysis. Bmc Public Health https://doi.org/10.1186/s12889-023-16824-z (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Romero-Perez, E. M. et al. Influence of a physical exercise program in the anxiety and depression in children with obesity. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph17134655 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Martin, A. et al. Physical activity, diet and other behavioural interventions for improving cognition and school achievement in children and adolescents with obesity or overweight. Cochrane Database Systematic Rev. https://doi.org/10.1002/14651858.CD009728.pub3 (2018).

    Article 

    Google Scholar
     

  • Cai, Y., Zhu, X. & Wu, X. Overweight, obesity, and screen-time viewing among Chinese school-aged children: National prevalence estimates from the 2016 Physical Activity and Fitness in China-The Youth Study. J. Sport Health Sci. 6, 404–409. https://doi.org/10.1016/j.jshs.2017.09.002 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sedgwick, M. J., Morris, J. G., Nevill, M. E. & Barrett, L. A. Effect of repeated sprints on postprandial endothelial function and triacylglycerol concentrations in adolescent boys. J. Sports Sci. 33, 806–816. https://doi.org/10.1080/02640414.2014.964749 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Costigan, S. A., Eather, N., Plotnikoff, R. C., Taaffe, D. R. & Lubans, D. R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2014-094490 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Donnelly, J. E. et al. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exercise 41, 459–471. https://doi.org/10.1249/MSS.0b013e3181949333 (2009).

    Article 

    Google Scholar
     

  • Reilly, J. J. & Kelly, J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: Systematic review. Int. J. Obesity 35, 891–898. https://doi.org/10.1038/ijo.2010.222 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Hopkins, N. D. et al. Relationships between measures of fitness, physical activity, body composition and vascular function in children. Atherosclerosis 204, 244–249. https://doi.org/10.1016/j.atherosclerosis.2008.09.004 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Chuensiri, N., Suksom, D. & Tanaka, H. Effects of high-intensity intermittent training on vascular function in obese preadolescent boys. Childhood Obesity 14, 41–49. https://doi.org/10.1089/chi.2017.002 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Weston, K. S., Wisloff, U. & Coombes, J. S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 48, 1227-U1252. https://doi.org/10.1136/bjsports-2013-092576 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Corbin, C. B., Welk, G. J., Corbin, W. R. & Welk, K. A. Concepts of Physical Fitness: Active Lifestyles for Wellness 14th edn. (William Glass, 2008).


    Google Scholar
     

  • Hutton, B., Caldwell, D. M., Chaimani, A., Schmid, C. H. & Cameron, C. The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann. Internal Med. 162(11), 777–784. https://doi.org/10.7326/M14-2385 (2015).

    Article 

    Google Scholar
     

  • Vrabel, M. Preferred reporting items for systematic reviews and meta-analyses. Oncol. Nursing Forum 42, 552–554. https://doi.org/10.1188/15.Onf.552-554 (2015).

    Article 

    Google Scholar
     

  • Adolescent health in the South-East Asia Region, https://www.who.int/southeastasia/health-topics/adolescent-health> (2022).

  • de Morton, N. A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 55, 129–133. https://doi.org/10.1016/s0004-9514(09)70043-1 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Farah, B. Q., Ritti-Dias, R. M., Balagopal, P., Hill, J. O. & Prado, W. L. Does exercise intensity affect blood pressure and heart rate in obese adolescents? A 6-month multidisciplinary randomized intervention study. Pediatric Obesity 9, 111–120. https://doi.org/10.1111/j.2047-6310.2012.00145.x (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hay, J. et al. Physical activity intensity and type 2 diabetes risk in overweight youth: a randomized trial. Int. J. Obesity 40, 607–614. https://doi.org/10.1038/ijo.2015.241 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bond, B. et al. Exercise intensity and the protection from postprandial vascular dysfunction in adolescents. Am. J. Physiol. -Heart Circulatory Physiol. 308, H1443–H1450. https://doi.org/10.1152/ajpheart.00074.2015 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Paravidino, V. B., Felix Mediano, M. F., Hoffman, D. J. & Sichieri, R. Effect of exercise intensity on spontaneous physical activity energy expenditure in overweight boys: A crossover study. Plos One https://doi.org/10.1371/journal.pone.0147141 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tadiotto, M. C. et al. Effects and individual response of continuous and interval training on adiponectin concentration, cardiometabolic risk factors, and physical fitness in overweight adolescents. Eur. J. Pediatr. 182, 2881–2889. https://doi.org/10.1007/s00431-023-04974-6 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Larsen, M. N. et al. Positive effects on bone mineralisation and muscular fitness after 10 months of intense school-based physical training for children aged 8–10 years: The FIT FIRST randomised controlled trial. Br. J. Sports Med. 52, 254. https://doi.org/10.1136/bjsports-2016-096219 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Ramirez-Velez, R. et al. Effects of different doses of exercise on inflammation markers among adolescents with overweight/obesity: HEPAFIT study. J. Clin. Endocrinol. Metabolism 107, E2619–E2627. https://doi.org/10.1210/clinem/dgac021 (2022).

    Article 

    Google Scholar
     

  • Cao, M., Tang, Y., Li, S. & Zou, Y. Effects of school-based high-intensity interval training on body composition, cardiorespiratory fitness and cardiometabolic markers in adolescent boys with obesity: A randomized controlled trial. Bmc Pediatr. https://doi.org/10.1186/s12887-021-03079-z (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dias, K. A. et al. Effect of high-intensity interval training on fitness, fat mass and cardiometabolic biomarkers in children with obesity: A randomised controlled trial. Sports Med. 48, 733–746. https://doi.org/10.1007/s40279-017-0777-0 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Faigenbaum, A. D., Westcott, W. L., Loud, R. L. & Long, C. The effects of different resistance training protocols on muscular strength and endurance development in children. Pediatrics 104, e5–e5. https://doi.org/10.1542/peds.104.1.e5 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benson, A. C., Torode, M. E. & Singh, M. A. F. The effect of high-intensity progressive resistance training on adiposity in children: A randomized controlled trial. Int. J. Obesity 32, 1016–1027. https://doi.org/10.1038/ijo.2008.5 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Taber, D. R. et al. Participation in vigorous sports, not moderate sports, is positively associated with cardiorespiratory fitness among adolescent girls. J. Phys. Activity Health 11, 596–603. https://doi.org/10.1123/jpah.2011-0280 (2014).

    Article 

    Google Scholar
     

  • Davis, C. L. et al. Exercise dose and diabetes risk in overweight and obese children a randomized controlled trial. Jama-J. Am. Med. Associat. 308, 1103–1112. https://doi.org/10.1001/2012.jama.10762 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Burns, S. F., Oo, H. H. & Anh Thanh Thuy, T. Effect of sprint interval exercise on postexercise metabolism and blood pressure in adolescents. Int. J. Sport Nutr. Exerc. Metabolism 22, 47–54. https://doi.org/10.1123/ijsnem.22.1.47 (2012).

    Article 

    Google Scholar
     

  • Leppanen, M. H. et al. Physical activity intensity, sedentary behavior, body composition and physical fitness in 4-year-old children: Results from the ministop trial. Int. J. Obesity 40, 1126–1133. https://doi.org/10.1038/ijo.2016.54 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Leppanen, M. H. et al. Longitudinal physical activity, body composition, and physical fitness in preschoolers. Med. Sci. Sports Exerc. 49, 2078–2085. https://doi.org/10.1249/mss.0000000000001313 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Gomes, P. P., Silva, H. J. G. D., Lira, C. T. C. D., Lofrano-Prado, M. C. & Prado, W. L. D. Efeitos de diferentes intensidades de treinamento aeróbio sobre a composição corporal em adolescentes obesos. Revista Brasileira de Cineantropometria Desempenho Humano 15, 594–603. https://doi.org/10.5007/1980-0037.2013v15n5p594 (2013).

    Article 

    Google Scholar
     

  • Buchan, D. S. et al. High intensity interval running enhances measures of physical fitness but not metabolic measures of cardiovascular disease risk in healthy adolescents. BMC Public Health 13, 498–498. https://doi.org/10.1186/1471-2458-13-498 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grasten, A., Huhtiniemi, M., Kolunsarka, I. & Jaakkola, T. Developmental associations of accelerometer measured moderate-to-vigorous physical activity and sedentary time with cardiorespiratory fitness in schoolchildren. J. Sci. Med. Sport 25, 884–889. https://doi.org/10.1016/j.jsams.2022.08.015 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Costigan, S. A. et al. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: A pilot randomized controlled trial. Prevent. Med. Rep. 2, 973–979. https://doi.org/10.1016/j.pmedr.2015.11.001 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Saidi, O. et al. Acute effect of an intensified exercise program on subsequent sleep, dietary intake, and performance in junior rugby players. Eur. J. Appl. Physiol. 119, 2075–2082. https://doi.org/10.1007/s00421-019-04196-5 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Saidi, O., Rochette, E., Bovet, M., Merlin, E. & Duche, P. Acute intense exercise improves sleep and decreases next morning consumption of energy-dense food in adolescent girls with obesity and evening chronotype. Pediatric Obesity https://doi.org/10.1111/ijpo.12613 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Gerber, M. et al. Moderate-to-vigorous physical activity is associated with cardiorespiratory fitness among primary schoolchildren living in cote D’ivoire, South Africa, and Tanzania. Front. Public Health https://doi.org/10.3389/fpubh.2021.671782 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Winn, C. O. N. et al. Effect of high-intensity interval training in adolescents with asthma: The exercise for asthma with Commando Joe’s (R) (X4ACJ) trial. J. Sport Health Sci. 10, 488–498. https://doi.org/10.1016/j.jshs.2019.05.009 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • da Silva, P., Bento, A. F., Paez, L. C., de Mendonca, M. & Raimundo, A. High-intensity interval training in high-school physical education classes: Study protocol for a randomized controlled trial. Contemporary Clin. Trials Commun. 24, 100867–100867. https://doi.org/10.1016/j.conctc.2021.100867 (2021).

    Article 

    Google Scholar
     

  • Videira-Silva, A., Sardinha, L. B. B. & Fonseca, H. Atherosclerosis prevention in adolescents with obesity: The role of moderate-vigorous physical activity. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph192315537 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Juric, P., Dudley, D. A. & Petocz, P. Does incorporating high intensity interval training in physical education classes improve fitness outcomes of students? A cluster randomized controlled trial. Prevent. Med. Rep. 32, 102127–102127. https://doi.org/10.1016/j.pmedr.2023.102127 (2023).

    Article 

    Google Scholar
     

  • Farpour-Lambert, N. J. et al. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J. Am. College Cardiol. 54, 2396–2406. https://doi.org/10.1016/j.jacc.2009.08.030 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Ketelhut, S., Ketelhut, K., Ketelhut, S. R. & Ketelhut, R. G. Effects of school-based high-intensity interval training on hemodynamic parameters and heart rate variability: A randomized controlled trial. J. Strength Cond. Res. https://doi.org/10.1519/jsc.0000000000004744 (2024).

    Article 
    PubMed 

    Google Scholar
     

  • Migueles, J. H. et al. Effects of an exercise program on cardiometabolic and mental health in children with overweight or obesity a secondary analysis of a randomized clinical trial. Jama Netw. Open https://doi.org/10.1001/jamanetworkopen.2023.24839 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Batacan, R. B. Jr., Duncan, M. J., Dalbo, V. J., Tucker, P. S. & Fenning, A. S. Effects of high-intensity interval training on cardiometabolic health: A systematic review and meta-analysis of intervention studies. Br. J. Sports Med. https://doi.org/10.1136/bjsports-2015-095841 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Hao, Z. et al. Which exercise interventions are more helpful in treating primary obesity in young adults? A systematic review and Bayesian network meta-analysis. Archiv. Med. Sci. 19, 865–883. https://doi.org/10.5114/aoms/153479 (2023).

    Article 

    Google Scholar
     

  • Borsheim, E. & Bahr, R. Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports medicine (Auckland, NZ) 33, 1037–1060 (2003).

    Article 

    Google Scholar
     

  • Sindorf, M. A. G. et al. Excess post-exercise oxygen consumption and substrate oxidation following high-intensity interval training: Effects of recovery manipulation. Int. J. Exerc. Sci. 14, 1151–1165 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kargarfard, M. et al. Effects of endurance and high intensity training on ICAM-1 and VCAM-1 levels and arterial pressure in obese and normal weight adolescents. Physician Sportsmedicine 44, 208–216. https://doi.org/10.1080/00913847.2016.1200442 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Buchan, D. S. et al. The effects of time and intensity of exercise on novel and established markers of CVD in adolescent youth. Am. J. Hum. Biol. 23, 517–526. https://doi.org/10.1002/ajhb.21166 (2011).

    Article 
    PubMed 

    Google Scholar
     

  • Martin-Smith, R. et al. High intensity interval training (HIIT) improves cardiorespiratory fitness (CRF) in healthy, overweight and obese adolescents: A systematic review and meta-analysis of controlled studies. Int. J. Environ. Res. Public Health 17(8), 2955. https://doi.org/10.3390/ijerph17082955 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cao, M., Tang, Y., Li, S. & Zou, Y. Effects of high-intensity interval training and moderate-intensity continuous training on cardiometabolic risk factors in overweight and obesity children and adolescents: A meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public Health https://doi.org/10.3390/ijerph182211905 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bond, B., Weston, K. L., Williams, C. A. & Barker, A. R. Perspectives on high-intensity interval exercise for health promotion in children and adolescents. Open Access J. Sports Med. 8, 243–265. https://doi.org/10.2147/oajsm.S127395 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Little, J. P. et al. Low-volume high-intensity interval training reduces hyperglycemia and increases muscle mitochondrial capacity in patients with type 2 diabetes. J. Appl. Physiol. 111, 1554–1560. https://doi.org/10.1152/japplphysiol.00921.2011 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gibala, M. J. et al. Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J. Appl. Physiol. 106, 929–934. https://doi.org/10.1152/japplphysiol.90880.2008 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, J. P., Safdar, A., Bishop, D., Tarnopolsky, M. A. & Gibala, M. J. An acute bout of high-intensity interval training increases the nuclear abundance of PGC-1α and activates mitochondrial biogenesis in human skeletal muscle. Am. J. Physiol. -Regulatory Integrative Comparative Physiol. 300, R1303–R1310. https://doi.org/10.1152/ajpregu.00538.2010 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R. & Hills, A. P. The impact of childhood obesity on musculoskeletal form. Obesity Rev.: Off. J. Int. Associat. Study Obesity 7, 209–218. https://doi.org/10.1111/j.1467-789X.2006.00216.x (2006).

    Article 
    CAS 

    Google Scholar
     

  • Janssen, I. & LeBlanc, A. G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Activity https://doi.org/10.1186/1479-5868-7-40 (2010).

    Article 

    Google Scholar
     

  • Smith, J. J. et al. Behavioral correlates of muscular fitness in children and adolescents: A systematic review. Sports Med. 49, 887–904. https://doi.org/10.1007/s40279-019-01089-7 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Holland, G. J., Tanaka, K., Shigematsu, R. & Nakagaichi, M. Flexibility and physical functions of older adults: A review. Aging Phys. Activity https://doi.org/10.1123/japa.10.2.169 (2002).

    Article 

    Google Scholar
     

  • Badley, E. M., Wagstaff, S. & Wood, P. H. Measures of functional ability (disability) in arthritis in relation to impairment of range of joint movement. Ann. Rheumatic Diseases 43, 563–569. https://doi.org/10.1136/ard.43.4.563 (1984).

    Article 
    CAS 

    Google Scholar
     

  • D’Onofrio, G., Kirschner, J., Prather, H., Goldman, D. & Rozanski, A. Musculoskeletal exercise: Its role in promoting health and longevity. Progr. Cardiovasc. Diseases 77, 25–36. https://doi.org/10.1016/j.pcad.2023.02.006 (2023).

    Article 

    Google Scholar
     

  • Cvetkovic, N. et al. Exercise training in overweight and obese children: Recreational football and high-intensity interval training provide similar benefits to physical fitness. Scandinavian J. Med. Sci. Sports 28, 18–32. https://doi.org/10.1111/sms.13241 (2018).

    Article 

    Google Scholar
     

  • Liu, C., Cao, Y., Zhang, Z., Gao, R. & Qu, G. Correlation of fundamental movement skills with health-related fitness elements in children and adolescents: A systematic review. Front. Public Health https://doi.org/10.3389/fpubh.2023.1129258 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Continue Reading