Connect with us

Fitness

Immune inflammation markers and physical fitness during a congested match play period in elite male soccer players – Scientific Reports

Published

on

Immune inflammation markers and physical fitness during a congested match play period in elite male soccer players – Scientific Reports

  • Barnes, C., Archer, D. T., Hogg, B., Bush, M. & Bradley, P. S. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med.35 (13), 1095–1100. https://doi.org/10.1055/s-0034-1375695 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Wallace, J. L. & Norton, K. I. Evolution of World Cup soccer fnal games 1966–2010: game structure, speed and play patterns. J. Sci. Med. Sport. 17 (2), 223–228. https://doi.org/10.1016/j.jsams.2013.03.016 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Julian, R., Page, R. M. & Harper, L. D. The efect of fixture congestion on performance during Professional Male Soccer Match-Play: a systematic critical review with Meta-analysis. Sports Med.51, 255–273. https://doi.org/10.1007/s40279-020-01359-9 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Pillay, L., Burgess, D., Van Rensburg, D. C. J. & KerkhoffsGM, G. V. The congested international match calendar in football: views of 1055 professional male players. BMC Sports Sci. Med. Rehabil. 14, 200. https://doi.org/10.1186/s13102-022-00597-w (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Carling, C., Le Gall, F. & Dupont, G. Are physical performance and injury risk in a professional soccer team in match-play affected over a prolonged period of fixture congestion? Int. J. Sports Med.33, 36–42. https://doi.org/10.1055/s-0031-1283190 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dellal, A., Lago-Penas, C., Rey, E., Chamari, K. & Orhant, E. The effects of a congested fixture period on physical performance, technical activity and injury rate during matches in a professional soccer team. Br. J. Sports Med.49, 390–394. https://doi.org/10.1136/bjsports-2012-091290 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Page, R. M., Field, A., Langley, B., Harper, L. D. & Julian, R. The effects of fixture congestion on injury in professional male soccer: a systematic review. Sports Med.53, 667–685. https://doi.org/10.1007/s40279-022-01799-5 (2023).

    Article 
    PubMed 

    Google Scholar
     

  • Nieman, D. C. & Wentz, L. M. The compelling link between physical activity and the body’s defense system. J. Sport Health Sci.8 (3), 201–217. https://doi.org/10.1016/j.jshs.2018.09.009 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Soligard, T. et al. How much is too much? (part 1) International Olympic Committee consensus statement on load in sport and risk of injury. Br. J. Sports Med.50 (17), 1030–1041. https://doi.org/10.1136/bjsports-2016-096581 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Akenhead, R. & Nassis, G. P. Training load and player monitoring in high-level football: current practice and perceptions. Int. J. Sports Physiol. Perform.11 (5), 587–593. https://doi.org/10.1123/ijspp.2015-0331 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Walzik, D., Joisten, N., Zacher, J. & Zimmer, P. Transferring clinically established immune inflammation markers into exercise physiology. Eur. J. ApplPhysiol. 121, 1803–1814. https://doi.org/10.1007/s00421-021-04668-7 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Gonçalves, C. A. M. et al. Effect of acute and chronic aerobic exercise on immunological markers: a systematic review. Front. Physiol.10, 1–11. https://doi.org/10.3389/fphys.2019.01602 (2020).

    Article 

    Google Scholar
     

  • Malm, C. et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J. Physiol.529, 243–262. https://doi.org/10.1111/j.1469-7793.2000.00243.x (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Anđelković, M. et al. Hematological and biochemical parameters in elite soccer players during a competitive half season. J. Med. Biochem.34 (4), 460466. https://doi.org/10.2478/jomb-2014-0057 (2015).

    Article 

    Google Scholar
     

  • Shek, P. N., Sabiston, B. H., Buguet, A. & Radomski, M. W. Strenuous exercise and immunological changes: a multiple-time-point analysis of leukocyte subsets, CD4/CD8 ratio,immunoglobulin production and NK cell response. Int. J. Sports Med.16 (7), 466474. https://doi.org/10.1055/s-2007-973039 (1995).

    Article 

    Google Scholar
     

  • Farjallah, M. A. et al. Effect of nocturnal melatonin intake on cellular damage and recovery from repeated sprint performance during an intensive training schedule. Chronobiol Int.37, 686–698. https://doi.org/10.5114/biolsport.2022.106385 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zarbock, A., Polanowska-Grabowska, R. K. & Ley, K. Platelet-neutro phil-interactions: linking hemostasis and inflammation. Blood Rev.21, 99–111. https://doi.org/10.1016/j.blre.2006.06.001 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, R. et al. Prognostic value of systemic immune-infammation index in cancer: a meta-analysis. J. Cancer. 9, 3295–3302. https://doi.org/10.7150/jca.2569 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hemond, C. C. et al. The neutrophil-tolymphocyte and monocyte-to-lymphocyte ratios are independently associated with neurological disability and brain atrophy in multiple sclerosis. BMC Neurol.19, 1–10. https://doi.org/10.1186/s12883-019-1245-2 (2019).

    Article 

    Google Scholar
     

  • BhatT, Teli, S. et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: a review. Expert Rev. Cardiovasc. Ther.11, 55–59. https://doi.org/10.1586/erc.12.159 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Svendsen, I. S. et al. Impact of intensified training and carbohydrate supplementation on immunity and markers of overreaching in highly trained cyclists. Eur. J. ApplPhysiol. 116 (5), 867–877. https://doi.org/10.1007/s00421-016-3340-z (2016).

    Article 
    CAS 

    Google Scholar
     

  • Gonda, K. et al. Elevated neutrophil-tolymphocyte ratio is associated with nutritional impairment, immune suppression, resistance to S-1 plus cisplatin, and poor prognosis in patients with stage? IV gastric cancer. Mol. Clin. Oncol.https://doi.org/10.3892/mco.2017.1438 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, Y. et al. Relationship between monocytes to lymphocytes ratio and axial spondyloarthritis. Int Immunopharmacol. 2018;57:43–46. (2018). https://doi.org/10.1016/j.intimp.2018.02.008

  • Zhu, Z. et al. Clinical value of immune-infammatory parameters to assess the severity of coronavirus disease 2019. Int. J. Infect. Dis.95, 332–339. https://doi.org/10.1016/j.ijid.2020.04.041 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cai, J. et al. The neutrophil-to-lymphocyte ratio determines clinical efcacy of corticosteroid therapy in patients with COVID-19. CellMetab33, 258–269e3. https://doi.org/10.1016/j.cmet.2021.01.002 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Zacher, J. et al. Cellular integrative immune markers in eliteathletes. Int. J. Sports Med.44 (04), 298–308. https://doi.org/10.1055/a-1976-6069 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Buonacera, A., Stancanelli, B. & ColaciM MalatinoL.Neutrophil to lymphocyte ratio: an emerging marker of the relationships between the immune system and diseases. Int. J. Mol. Sci.23 (7), 3636. https://doi.org/10.3390/ijms23073636 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bangsbo, J., Iaia, F. M. & Krustrup, P. The yo-yo intermittent recovery test. Sports Med.38 (1), 37–51. https://doi.org/10.2165/00007256-200838010-00004 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Prieske, O. et al. Effects of surface instability on neuromuscular performance during drop jumps and landings. Eur. J. Appl. Physiol.113 (12), 2943–2951. https://doi.org/10.1007/s00421-013-2724-6 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Altmann, S., Ringhof, S., Neumann, R., Woll, A. & Rumpf, M. C. Validity and reliability of speed tests used in soccer: a systematic review.PLoS one, 14, https://doi.org/10.1371/journal.pone.0220982

  • Foster, C. Monitoring training in athletes with reference to overtraining syndrome. Med. Sci. Sports Exerc.30, 1164–1168. https://doi.org/10.1123/ijspp.2015-0331 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hopkins, R. L. I. I. & Burr, B. M. Modeling freshwater fish distributions using multiscale landscape data: a case study of six narrow range endemics. Ecol. Model.220, 2024–2034 (2009). https://doi.org/10.1016/j.ecolmodel.2009.04.027

    Article 

    Google Scholar
     

  • Cohen, J. Statistical Power Analysis for the Behavioural Sciences 2nd edn (Lawrence Erlbaum, 1988).

  • Hopkins, W., Marshall, S., Batterham, A. & HaninJ Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc.41, 3 (2009).

    Article 
    PubMed 

    Google Scholar
     

  • Rosa-Neto, J. C. et al. Immunometabolism-ft: how exercise and training can modify T cell and macrophage metabolism in health and disease. Exerc. Immunol. Rev.28, 29–46 (2022).

    PubMed 

    Google Scholar
     

  • Owen, A. L. et al. Stability in post-seasonal hematological profiles in response to high-competitive match-play loads within elite top-level European soccer players: implications from a pilot study. Open. Access. J. Sports Med.10, 157–166. https://doi.org/10.2147/OAJSM.S116579 (2018).

    Article 

    Google Scholar
     

  • Selmi, O. et al. Effect of intensified training Camp on Psychometric Status, Mood State, and hematological markers in Youth Soccer players. Children19 (9(12), 1996. https://doi.org/10.3390/children9121996 (2022).

    Article 

    Google Scholar
     

  • Simpson, R. J., Kunz, H., Agha, N. & Graf, R. Exercise and the regulation of immune functions. Prog Mol. Biol. Transl Sci.135, 355–380. https://doi.org/10.1016/bs.pmbts.2015.08.001 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Peake, J. M., Neubauer, O., Gatta, P. A. D. & Nosaka, K. Muscle damage and infammation during recovery from exercise. J. Appl. Physiol.122, 559–570. https://doi.org/10.1152/japplphysiol.00971.2016 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nieman, D. Special feature for the olympics: effects of exercise on the immune system: Exercise effects on systemic immunity. Immunol. Cell. Biol.78, 496–501. https://doi.org/10.1111/j.1440-1711.2000.t01-5-.x (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kakanis, M. W. et al. The open window of susceptibility to infection after acute exercise in healthy young male elite athletes. ExercImmunolRev16, 119–137. https://doi.org/10.1016/j.jsams.2010.10.642 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Campbell, J. P. & Turner, J. E. Debunking the myth of exerciseinduced immune suppression: redefning the impact of exercise on immunological health across the lifespan. Front. Immunol.9, 1–21. https://doi.org/10.3389/fmmu.2018.00648 (2018).

    Article 

    Google Scholar
     

  • Malm, C., Ekblom, O. & Ekblom, B. Immune system alteration in response to two consecutive soccer games. Acta Physiol. Scand.180, 143–155. https://doi.org/10.1046/j.00016772.2003.01232.x (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Fulkerson, P. C. & Rothenberg, M. E. Targeting eosinophils in allergy, infammation and beyond. NatRev Drug Discov. 12 (2), 117. https://doi.org/10.1038/nrd3838 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Schlagheck, M. L. et al. Cellular immune response to acute exercise: comparison of endurance and resistance exercise. Eur. J. Haematol.105 (1), 75–84. https://doi.org/10.1111/ejh.13412 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Continue Reading